New Therapy of Skin Repair Combining Adipose-Derived Mesenchymal Stem Cells with Sodium Carboxymethylcellulose Scaffold in a Pre-Clinical Rat Model
نویسندگان
چکیده
Lesions with great loss of skin and extensive burns are usually treated with heterologous skin grafts, which may lead rejection. Cell therapy with mesenchymal stem cells is arising as a new proposal to accelerate the healing process. We tested a new therapy consisting of sodium carboxymethylcellulose (CMC) as a biomaterial, in combination with adipose-derived stem cells (ADSCs), to treat skin lesions in an in vivo rat model. This biomaterial did not affect membrane viability and induced a small and transient genotoxicity, only at the highest concentration tested (40 mg/mL). In a rat wound model, CMC at 10 mg/mL associated with ADSCs increased the rate of cell proliferation of the granulation tissue and epithelium thickness when compared to untreated lesions (Sham), but did not increase collagen fibers nor alter the overall speed of wound closure. Taken together, the results show that the CMC is capable to allow the growth of ADSCs and is safe for this biological application up to the concentration of 20 mg/mL. These findings suggest that CMC is a promising biomaterial to be used in cell therapy.
منابع مشابه
Healing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملIn vitro histological investigation of interactions between rat decellularized large intestine scaffold and human adipose derived mesenchymal stem cells
The aim of this study was to investigate the interactions between rat intestine decellularized scaffold and human adipose derived mesenchymal stem cells. Rat large intestine was dissected in fragments and decellularized by physicochemical methods. The scaffolds were loaded by human adipose derived mesenchymal stem cells expressing green fluorescent protein. Microscopic sections were prepared fr...
متن کاملOsteogenic Differentiation of Mesenchymal Stem Cells Via Osteoblast- Imprinted Substrate: In Vitro and In Vivo Evaluation in Rat Model
BACKGROUND: Stem cells have great effects in clinical cell-based therapy. Accordingly, controlling the behavior and directing the fate of stem cells cultured in the laboratory is an important issue. OBJECTIVES: The aim of this study was to evaluate osteogenic properties of adipose derived mesenchymal stem cells (ADSCs) which differentiated toward osteogenic linage by osteoblast-imprinted substr...
متن کاملEvaluation of the effects of autologous adipose derived mesenchymal stem cells in combination with polyacrylamide hydrogel and nanohydroxyapatite scaffolds on healing in rabbit critical-sized radial bone defect model
Objective: In this study, the bone regeneration ability of polyacrylamide hydrogel and nanohydroxyapatite scaffolds (PAAH/NHA) and stem cells derived from adipose tissue (ADSCs) in the healing of critical sized bone defects in rabbit radius were assessed. Animals and procedures: 12 New Zealand white male rabbits were divided into 3 groups. The rabbits were anesthetized and 15 mm bone def...
متن کاملSkin wound healing following the spray of human abdominal adipose tissue-derived mesenchymal stem cells in diabetic male rat
Introduction: Diabetes is rising worldwide and impaired wound healing is one of its major complications. This study aimed to determine the effects of adipose-derived mesenchymal stem cells (MSCs) on wound healing in diabetic rats. Materials and Methods: In this experimental study, abdominal adipose tissue was obtained from 10 patients who underwent an abdominoplasty. MSCs were isolated from adi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014